Problem: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) active(__(X,nil())) -> mark(X) active(__(nil(),X)) -> mark(X) active(and(tt(),X)) -> mark(X) active(isNePal(__(I,__(P,I)))) -> mark(tt()) active(__(X1,X2)) -> __(active(X1),X2) active(__(X1,X2)) -> __(X1,active(X2)) active(and(X1,X2)) -> and(active(X1),X2) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1),X2) -> mark(__(X1,X2)) __(X1,mark(X2)) -> mark(__(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1,X2)) -> __(proper(X1),proper(X2)) proper(nil()) -> ok(nil()) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(tt()) -> ok(tt()) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1),ok(X2)) -> ok(__(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {40,37,36,35,25,24,10,9,8,7,6,5} transitions: mark0(25) -> 1* mark0(2) -> 1* mark0(39) -> 1* mark0(4) -> 1* mark0(26) -> 1* mark0(1) -> 1* mark0(38) -> 1* mark0(3) -> 1* ok0(25) -> 4* ok0(4) -> 4* ok0(26) -> 4* ok0(1) -> 4* ok0(38) -> 4* ok0(3) -> 4* top0(25) -> 10* top0(2) -> 10* top0(39) -> 10* top0(4) -> 10* top0(26) -> 10* top0(1) -> 10* top0(38) -> 10* top0(3) -> 10* top1(40) -> 10* top1(25) -> 10* top1(24) -> 10* top1(9) -> 10* active1(25) -> 24* active1(4) -> 24*,5,9 active1(26) -> 24* active1(1) -> 24*,5,9 active1(38) -> 24* active1(3) -> 24*,5,9 proper1(25) -> 9* proper1(2) -> 9* proper1(39) -> 9* proper1(4) -> 9* proper1(26) -> 9* proper1(1) -> 9* proper1(38) -> 9* proper1(3) -> 9* ok1(35) -> 8* ok1(37) -> 6* ok1(7) -> 7* ok1(2) -> 25*,4,9 ok1(39) -> 25* ok1(36) -> 7* ok1(26) -> 4,25* ok1(6) -> 6* ok1(38) -> 25* ok1(8) -> 8* isNePal1(25) -> 8* isNePal1(4) -> 8* isNePal1(26) -> 8* isNePal1(1) -> 8* isNePal1(38) -> 8* isNePal1(3) -> 8* and1(38,1) -> 7* and1(26,39) -> 7* and1(38,3) -> 7* and1(1,39) -> 7* and1(3,1) -> 7* and1(3,3) -> 7* and1(2,26) -> 7* and1(39,4) -> 7* and1(38,25) -> 7* and1(2,38) -> 7* and1(4,2) -> 7* and1(4,4) -> 7* and1(3,25) -> 7* and1(38,39) -> 7* and1(25,1) -> 7* and1(25,3) -> 7* and1(39,26) -> 7* and1(3,39) -> 7* and1(4,26) -> 7* and1(39,38) -> 7* and1(26,2) -> 7* and1(4,38) -> 7* and1(26,4) -> 7* and1(25,25) -> 7* and1(1,2) -> 7* and1(1,4) -> 7* and1(25,39) -> 7* and1(2,1) -> 7* and1(26,26) -> 7* and1(2,3) -> 7* and1(1,26) -> 7* and1(26,38) -> 7* and1(38,2) -> 7* and1(38,4) -> 7* and1(1,38) -> 7* and1(3,2) -> 7* and1(3,4) -> 7* and1(2,25) -> 7* and1(39,1) -> 7* and1(39,3) -> 7* and1(38,26) -> 7* and1(4,1) -> 7* and1(4,3) -> 7* and1(3,26) -> 7* and1(38,38) -> 7* and1(25,2) -> 7* and1(39,25) -> 7* and1(3,38) -> 7* and1(25,4) -> 7* and1(4,25) -> 7* and1(26,1) -> 7* and1(26,3) -> 7* and1(4,39) -> 7* and1(1,1) -> 7* and1(25,26) -> 7* and1(1,3) -> 7* and1(25,38) -> 7* and1(26,25) -> 7* and1(2,4) -> 7* and1(1,25) -> 7* __1(38,1) -> 6* __1(26,39) -> 6* __1(38,3) -> 6* __1(1,39) -> 6* __1(3,1) -> 6* __1(3,3) -> 6* __1(2,26) -> 6* __1(39,4) -> 6* __1(38,25) -> 6* __1(2,38) -> 6* __1(4,2) -> 6* __1(4,4) -> 6* __1(3,25) -> 6* __1(38,39) -> 6* __1(25,1) -> 6* __1(25,3) -> 6* __1(39,26) -> 6* __1(3,39) -> 6* __1(4,26) -> 6* __1(39,38) -> 6* __1(26,2) -> 6* __1(4,38) -> 6* __1(26,4) -> 6* __1(25,25) -> 6* __1(1,2) -> 6* __1(1,4) -> 6* __1(25,39) -> 6* __1(2,1) -> 6* __1(26,26) -> 6* __1(2,3) -> 6* __1(1,26) -> 6* __1(26,38) -> 6* __1(38,2) -> 6* __1(38,4) -> 6* __1(1,38) -> 6* __1(3,2) -> 6* __1(3,4) -> 6* __1(2,25) -> 6* __1(39,1) -> 6* __1(39,3) -> 6* __1(38,26) -> 6* __1(4,1) -> 6* __1(4,3) -> 6* __1(3,26) -> 6* __1(38,38) -> 6* __1(25,2) -> 6* __1(39,25) -> 6* __1(3,38) -> 6* __1(25,4) -> 6* __1(4,25) -> 6* __1(26,1) -> 6* __1(26,3) -> 6* __1(4,39) -> 6* __1(1,1) -> 6* __1(25,26) -> 6* __1(1,3) -> 6* __1(25,38) -> 6* __1(26,25) -> 6* __1(2,4) -> 6* __1(1,25) -> 6* mark1(35) -> 8* mark1(37) -> 6* mark1(7) -> 7* mark1(36) -> 7* mark1(6) -> 6* mark1(8) -> 8* ok2(35) -> 8* ok2(37) -> 6* ok2(32) -> 8* ok2(27) -> 9* ok2(39) -> 25*,9 ok2(36) -> 7* ok2(31) -> 7* ok2(38) -> 25*,4,9 ok2(28) -> 6* isNePal2(2) -> 35*,8,32 isNePal2(39) -> 35* isNePal2(26) -> 35*,8,32 isNePal2(38) -> 8,35* and2(26,39) -> 7,36* and2(2,26) -> 36*,7,31 and2(39,2) -> 36* and2(2,38) -> 7,36* and2(38,39) -> 7,36* and2(39,26) -> 7,36* and2(39,38) -> 7,36* and2(26,2) -> 36*,7,31 and2(26,26) -> 36*,7,31 and2(26,38) -> 7,36* and2(38,2) -> 7,36* and2(38,26) -> 7,36* and2(2,39) -> 36* and2(38,38) -> 7,36* and2(39,39) -> 36* and2(2,2) -> 36*,7,31 __2(26,39) -> 6,37* __2(2,26) -> 37*,6,28 __2(39,2) -> 37* __2(2,38) -> 6,37* __2(38,39) -> 6,37* __2(39,26) -> 6,37* __2(39,38) -> 6,37* __2(26,2) -> 37*,6,28 __2(26,26) -> 37*,6,28 __2(26,38) -> 6,37* __2(38,2) -> 6,37* __2(38,26) -> 6,37* __2(2,39) -> 37* __2(38,38) -> 6,37* __2(39,39) -> 37* __2(2,2) -> 37*,6,28 tt2() -> 26,38*,2,3,27 nil2() -> 39*,2,27 top2(40) -> 10* top2(34) -> 10* active2(27) -> 34* active2(2) -> 24,40*,9,5,34 active2(39) -> 34,40* active2(26) -> 24,40*,34 active2(38) -> 24,34,40* problem: Qed