Problem:
active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
active(__(X,nil())) -> mark(X)
active(__(nil(),X)) -> mark(X)
active(and(tt(),X)) -> mark(X)
active(isNePal(__(I,__(P,I)))) -> mark(tt())
active(__(X1,X2)) -> __(active(X1),X2)
active(__(X1,X2)) -> __(X1,active(X2))
active(and(X1,X2)) -> and(active(X1),X2)
active(isNePal(X)) -> isNePal(active(X))
__(mark(X1),X2) -> mark(__(X1,X2))
__(X1,mark(X2)) -> mark(__(X1,X2))
and(mark(X1),X2) -> mark(and(X1,X2))
isNePal(mark(X)) -> mark(isNePal(X))
proper(__(X1,X2)) -> __(proper(X1),proper(X2))
proper(nil()) -> ok(nil())
proper(and(X1,X2)) -> and(proper(X1),proper(X2))
proper(tt()) -> ok(tt())
proper(isNePal(X)) -> isNePal(proper(X))
__(ok(X1),ok(X2)) -> ok(__(X1,X2))
and(ok(X1),ok(X2)) -> ok(and(X1,X2))
isNePal(ok(X)) -> ok(isNePal(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {40,37,36,35,25,24,10,9,8,7,6,5}
transitions:
mark0(25) -> 1*
mark0(2) -> 1*
mark0(39) -> 1*
mark0(4) -> 1*
mark0(26) -> 1*
mark0(1) -> 1*
mark0(38) -> 1*
mark0(3) -> 1*
ok0(25) -> 4*
ok0(4) -> 4*
ok0(26) -> 4*
ok0(1) -> 4*
ok0(38) -> 4*
ok0(3) -> 4*
top0(25) -> 10*
top0(2) -> 10*
top0(39) -> 10*
top0(4) -> 10*
top0(26) -> 10*
top0(1) -> 10*
top0(38) -> 10*
top0(3) -> 10*
top1(40) -> 10*
top1(25) -> 10*
top1(24) -> 10*
top1(9) -> 10*
active1(25) -> 24*
active1(4) -> 24*,5,9
active1(26) -> 24*
active1(1) -> 24*,5,9
active1(38) -> 24*
active1(3) -> 24*,5,9
proper1(25) -> 9*
proper1(2) -> 9*
proper1(39) -> 9*
proper1(4) -> 9*
proper1(26) -> 9*
proper1(1) -> 9*
proper1(38) -> 9*
proper1(3) -> 9*
ok1(35) -> 8*
ok1(37) -> 6*
ok1(7) -> 7*
ok1(2) -> 25*,4,9
ok1(39) -> 25*
ok1(36) -> 7*
ok1(26) -> 4,25*
ok1(6) -> 6*
ok1(38) -> 25*
ok1(8) -> 8*
isNePal1(25) -> 8*
isNePal1(4) -> 8*
isNePal1(26) -> 8*
isNePal1(1) -> 8*
isNePal1(38) -> 8*
isNePal1(3) -> 8*
and1(38,1) -> 7*
and1(26,39) -> 7*
and1(38,3) -> 7*
and1(1,39) -> 7*
and1(3,1) -> 7*
and1(3,3) -> 7*
and1(2,26) -> 7*
and1(39,4) -> 7*
and1(38,25) -> 7*
and1(2,38) -> 7*
and1(4,2) -> 7*
and1(4,4) -> 7*
and1(3,25) -> 7*
and1(38,39) -> 7*
and1(25,1) -> 7*
and1(25,3) -> 7*
and1(39,26) -> 7*
and1(3,39) -> 7*
and1(4,26) -> 7*
and1(39,38) -> 7*
and1(26,2) -> 7*
and1(4,38) -> 7*
and1(26,4) -> 7*
and1(25,25) -> 7*
and1(1,2) -> 7*
and1(1,4) -> 7*
and1(25,39) -> 7*
and1(2,1) -> 7*
and1(26,26) -> 7*
and1(2,3) -> 7*
and1(1,26) -> 7*
and1(26,38) -> 7*
and1(38,2) -> 7*
and1(38,4) -> 7*
and1(1,38) -> 7*
and1(3,2) -> 7*
and1(3,4) -> 7*
and1(2,25) -> 7*
and1(39,1) -> 7*
and1(39,3) -> 7*
and1(38,26) -> 7*
and1(4,1) -> 7*
and1(4,3) -> 7*
and1(3,26) -> 7*
and1(38,38) -> 7*
and1(25,2) -> 7*
and1(39,25) -> 7*
and1(3,38) -> 7*
and1(25,4) -> 7*
and1(4,25) -> 7*
and1(26,1) -> 7*
and1(26,3) -> 7*
and1(4,39) -> 7*
and1(1,1) -> 7*
and1(25,26) -> 7*
and1(1,3) -> 7*
and1(25,38) -> 7*
and1(26,25) -> 7*
and1(2,4) -> 7*
and1(1,25) -> 7*
__1(38,1) -> 6*
__1(26,39) -> 6*
__1(38,3) -> 6*
__1(1,39) -> 6*
__1(3,1) -> 6*
__1(3,3) -> 6*
__1(2,26) -> 6*
__1(39,4) -> 6*
__1(38,25) -> 6*
__1(2,38) -> 6*
__1(4,2) -> 6*
__1(4,4) -> 6*
__1(3,25) -> 6*
__1(38,39) -> 6*
__1(25,1) -> 6*
__1(25,3) -> 6*
__1(39,26) -> 6*
__1(3,39) -> 6*
__1(4,26) -> 6*
__1(39,38) -> 6*
__1(26,2) -> 6*
__1(4,38) -> 6*
__1(26,4) -> 6*
__1(25,25) -> 6*
__1(1,2) -> 6*
__1(1,4) -> 6*
__1(25,39) -> 6*
__1(2,1) -> 6*
__1(26,26) -> 6*
__1(2,3) -> 6*
__1(1,26) -> 6*
__1(26,38) -> 6*
__1(38,2) -> 6*
__1(38,4) -> 6*
__1(1,38) -> 6*
__1(3,2) -> 6*
__1(3,4) -> 6*
__1(2,25) -> 6*
__1(39,1) -> 6*
__1(39,3) -> 6*
__1(38,26) -> 6*
__1(4,1) -> 6*
__1(4,3) -> 6*
__1(3,26) -> 6*
__1(38,38) -> 6*
__1(25,2) -> 6*
__1(39,25) -> 6*
__1(3,38) -> 6*
__1(25,4) -> 6*
__1(4,25) -> 6*
__1(26,1) -> 6*
__1(26,3) -> 6*
__1(4,39) -> 6*
__1(1,1) -> 6*
__1(25,26) -> 6*
__1(1,3) -> 6*
__1(25,38) -> 6*
__1(26,25) -> 6*
__1(2,4) -> 6*
__1(1,25) -> 6*
mark1(35) -> 8*
mark1(37) -> 6*
mark1(7) -> 7*
mark1(36) -> 7*
mark1(6) -> 6*
mark1(8) -> 8*
ok2(35) -> 8*
ok2(37) -> 6*
ok2(32) -> 8*
ok2(27) -> 9*
ok2(39) -> 25*,9
ok2(36) -> 7*
ok2(31) -> 7*
ok2(38) -> 25*,4,9
ok2(28) -> 6*
isNePal2(2) -> 35*,8,32
isNePal2(39) -> 35*
isNePal2(26) -> 35*,8,32
isNePal2(38) -> 8,35*
and2(26,39) -> 7,36*
and2(2,26) -> 36*,7,31
and2(39,2) -> 36*
and2(2,38) -> 7,36*
and2(38,39) -> 7,36*
and2(39,26) -> 7,36*
and2(39,38) -> 7,36*
and2(26,2) -> 36*,7,31
and2(26,26) -> 36*,7,31
and2(26,38) -> 7,36*
and2(38,2) -> 7,36*
and2(38,26) -> 7,36*
and2(2,39) -> 36*
and2(38,38) -> 7,36*
and2(39,39) -> 36*
and2(2,2) -> 36*,7,31
__2(26,39) -> 6,37*
__2(2,26) -> 37*,6,28
__2(39,2) -> 37*
__2(2,38) -> 6,37*
__2(38,39) -> 6,37*
__2(39,26) -> 6,37*
__2(39,38) -> 6,37*
__2(26,2) -> 37*,6,28
__2(26,26) -> 37*,6,28
__2(26,38) -> 6,37*
__2(38,2) -> 6,37*
__2(38,26) -> 6,37*
__2(2,39) -> 37*
__2(38,38) -> 6,37*
__2(39,39) -> 37*
__2(2,2) -> 37*,6,28
tt2() -> 26,38*,2,3,27
nil2() -> 39*,2,27
top2(40) -> 10*
top2(34) -> 10*
active2(27) -> 34*
active2(2) -> 24,40*,9,5,34
active2(39) -> 34,40*
active2(26) -> 24,40*,34
active2(38) -> 24,34,40*
problem:
Qed