Problem:
 active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
 active(__(X,nil())) -> mark(X)
 active(__(nil(),X)) -> mark(X)
 active(and(tt(),X)) -> mark(X)
 active(isNePal(__(I,__(P,I)))) -> mark(tt())
 active(__(X1,X2)) -> __(active(X1),X2)
 active(__(X1,X2)) -> __(X1,active(X2))
 active(and(X1,X2)) -> and(active(X1),X2)
 active(isNePal(X)) -> isNePal(active(X))
 __(mark(X1),X2) -> mark(__(X1,X2))
 __(X1,mark(X2)) -> mark(__(X1,X2))
 and(mark(X1),X2) -> mark(and(X1,X2))
 isNePal(mark(X)) -> mark(isNePal(X))
 proper(__(X1,X2)) -> __(proper(X1),proper(X2))
 proper(nil()) -> ok(nil())
 proper(and(X1,X2)) -> and(proper(X1),proper(X2))
 proper(tt()) -> ok(tt())
 proper(isNePal(X)) -> isNePal(proper(X))
 __(ok(X1),ok(X2)) -> ok(__(X1,X2))
 and(ok(X1),ok(X2)) -> ok(and(X1,X2))
 isNePal(ok(X)) -> ok(isNePal(X))
 top(mark(X)) -> top(proper(X))
 top(ok(X)) -> top(active(X))

Proof:
 Bounds Processor:
  bound: 2
  enrichment: match
  automaton:
   final states: {40,37,36,35,25,24,10,9,8,7,6,5}
   transitions:
    mark0(25) -> 1*
    mark0(2) -> 1*
    mark0(39) -> 1*
    mark0(4) -> 1*
    mark0(26) -> 1*
    mark0(1) -> 1*
    mark0(38) -> 1*
    mark0(3) -> 1*
    ok0(25) -> 4*
    ok0(4) -> 4*
    ok0(26) -> 4*
    ok0(1) -> 4*
    ok0(38) -> 4*
    ok0(3) -> 4*
    top0(25) -> 10*
    top0(2) -> 10*
    top0(39) -> 10*
    top0(4) -> 10*
    top0(26) -> 10*
    top0(1) -> 10*
    top0(38) -> 10*
    top0(3) -> 10*
    top1(40) -> 10*
    top1(25) -> 10*
    top1(24) -> 10*
    top1(9) -> 10*
    active1(25) -> 24*
    active1(4) -> 24*,5,9
    active1(26) -> 24*
    active1(1) -> 24*,5,9
    active1(38) -> 24*
    active1(3) -> 24*,5,9
    proper1(25) -> 9*
    proper1(2) -> 9*
    proper1(39) -> 9*
    proper1(4) -> 9*
    proper1(26) -> 9*
    proper1(1) -> 9*
    proper1(38) -> 9*
    proper1(3) -> 9*
    ok1(35) -> 8*
    ok1(37) -> 6*
    ok1(7) -> 7*
    ok1(2) -> 25*,4,9
    ok1(39) -> 25*
    ok1(36) -> 7*
    ok1(26) -> 4,25*
    ok1(6) -> 6*
    ok1(38) -> 25*
    ok1(8) -> 8*
    isNePal1(25) -> 8*
    isNePal1(4) -> 8*
    isNePal1(26) -> 8*
    isNePal1(1) -> 8*
    isNePal1(38) -> 8*
    isNePal1(3) -> 8*
    and1(38,1) -> 7*
    and1(26,39) -> 7*
    and1(38,3) -> 7*
    and1(1,39) -> 7*
    and1(3,1) -> 7*
    and1(3,3) -> 7*
    and1(2,26) -> 7*
    and1(39,4) -> 7*
    and1(38,25) -> 7*
    and1(2,38) -> 7*
    and1(4,2) -> 7*
    and1(4,4) -> 7*
    and1(3,25) -> 7*
    and1(38,39) -> 7*
    and1(25,1) -> 7*
    and1(25,3) -> 7*
    and1(39,26) -> 7*
    and1(3,39) -> 7*
    and1(4,26) -> 7*
    and1(39,38) -> 7*
    and1(26,2) -> 7*
    and1(4,38) -> 7*
    and1(26,4) -> 7*
    and1(25,25) -> 7*
    and1(1,2) -> 7*
    and1(1,4) -> 7*
    and1(25,39) -> 7*
    and1(2,1) -> 7*
    and1(26,26) -> 7*
    and1(2,3) -> 7*
    and1(1,26) -> 7*
    and1(26,38) -> 7*
    and1(38,2) -> 7*
    and1(38,4) -> 7*
    and1(1,38) -> 7*
    and1(3,2) -> 7*
    and1(3,4) -> 7*
    and1(2,25) -> 7*
    and1(39,1) -> 7*
    and1(39,3) -> 7*
    and1(38,26) -> 7*
    and1(4,1) -> 7*
    and1(4,3) -> 7*
    and1(3,26) -> 7*
    and1(38,38) -> 7*
    and1(25,2) -> 7*
    and1(39,25) -> 7*
    and1(3,38) -> 7*
    and1(25,4) -> 7*
    and1(4,25) -> 7*
    and1(26,1) -> 7*
    and1(26,3) -> 7*
    and1(4,39) -> 7*
    and1(1,1) -> 7*
    and1(25,26) -> 7*
    and1(1,3) -> 7*
    and1(25,38) -> 7*
    and1(26,25) -> 7*
    and1(2,4) -> 7*
    and1(1,25) -> 7*
    __1(38,1) -> 6*
    __1(26,39) -> 6*
    __1(38,3) -> 6*
    __1(1,39) -> 6*
    __1(3,1) -> 6*
    __1(3,3) -> 6*
    __1(2,26) -> 6*
    __1(39,4) -> 6*
    __1(38,25) -> 6*
    __1(2,38) -> 6*
    __1(4,2) -> 6*
    __1(4,4) -> 6*
    __1(3,25) -> 6*
    __1(38,39) -> 6*
    __1(25,1) -> 6*
    __1(25,3) -> 6*
    __1(39,26) -> 6*
    __1(3,39) -> 6*
    __1(4,26) -> 6*
    __1(39,38) -> 6*
    __1(26,2) -> 6*
    __1(4,38) -> 6*
    __1(26,4) -> 6*
    __1(25,25) -> 6*
    __1(1,2) -> 6*
    __1(1,4) -> 6*
    __1(25,39) -> 6*
    __1(2,1) -> 6*
    __1(26,26) -> 6*
    __1(2,3) -> 6*
    __1(1,26) -> 6*
    __1(26,38) -> 6*
    __1(38,2) -> 6*
    __1(38,4) -> 6*
    __1(1,38) -> 6*
    __1(3,2) -> 6*
    __1(3,4) -> 6*
    __1(2,25) -> 6*
    __1(39,1) -> 6*
    __1(39,3) -> 6*
    __1(38,26) -> 6*
    __1(4,1) -> 6*
    __1(4,3) -> 6*
    __1(3,26) -> 6*
    __1(38,38) -> 6*
    __1(25,2) -> 6*
    __1(39,25) -> 6*
    __1(3,38) -> 6*
    __1(25,4) -> 6*
    __1(4,25) -> 6*
    __1(26,1) -> 6*
    __1(26,3) -> 6*
    __1(4,39) -> 6*
    __1(1,1) -> 6*
    __1(25,26) -> 6*
    __1(1,3) -> 6*
    __1(25,38) -> 6*
    __1(26,25) -> 6*
    __1(2,4) -> 6*
    __1(1,25) -> 6*
    mark1(35) -> 8*
    mark1(37) -> 6*
    mark1(7) -> 7*
    mark1(36) -> 7*
    mark1(6) -> 6*
    mark1(8) -> 8*
    ok2(35) -> 8*
    ok2(37) -> 6*
    ok2(32) -> 8*
    ok2(27) -> 9*
    ok2(39) -> 25*,9
    ok2(36) -> 7*
    ok2(31) -> 7*
    ok2(38) -> 25*,4,9
    ok2(28) -> 6*
    isNePal2(2) -> 35*,8,32
    isNePal2(39) -> 35*
    isNePal2(26) -> 35*,8,32
    isNePal2(38) -> 8,35*
    and2(26,39) -> 7,36*
    and2(2,26) -> 36*,7,31
    and2(39,2) -> 36*
    and2(2,38) -> 7,36*
    and2(38,39) -> 7,36*
    and2(39,26) -> 7,36*
    and2(39,38) -> 7,36*
    and2(26,2) -> 36*,7,31
    and2(26,26) -> 36*,7,31
    and2(26,38) -> 7,36*
    and2(38,2) -> 7,36*
    and2(38,26) -> 7,36*
    and2(2,39) -> 36*
    and2(38,38) -> 7,36*
    and2(39,39) -> 36*
    and2(2,2) -> 36*,7,31
    __2(26,39) -> 6,37*
    __2(2,26) -> 37*,6,28
    __2(39,2) -> 37*
    __2(2,38) -> 6,37*
    __2(38,39) -> 6,37*
    __2(39,26) -> 6,37*
    __2(39,38) -> 6,37*
    __2(26,2) -> 37*,6,28
    __2(26,26) -> 37*,6,28
    __2(26,38) -> 6,37*
    __2(38,2) -> 6,37*
    __2(38,26) -> 6,37*
    __2(2,39) -> 37*
    __2(38,38) -> 6,37*
    __2(39,39) -> 37*
    __2(2,2) -> 37*,6,28
    tt2() -> 26,38*,2,3,27
    nil2() -> 39*,2,27
    top2(40) -> 10*
    top2(34) -> 10*
    active2(27) -> 34*
    active2(2) -> 24,40*,9,5,34
    active2(39) -> 34,40*
    active2(26) -> 24,40*,34
    active2(38) -> 24,34,40*
  problem:
   
  Qed